Paracrine rather than autocrine regulation of myeloma-cell growth and differentiation by interleukin-6.
نویسندگان
چکیده
To explore the mechanisms involved in the pathogenesis of human multiple myeloma (MM), we investigated the potential role of interleukin-6 (IL-6), a B-cell differentiation factor in humans, and a growth factor for rat/mouse heterohybridomas and murine plasmacytomas. Using a heterohybridoma assay, we found that two well-documented human myeloma cell lines, RPMI 8226 and U266, did not secrete IL-6 and did not express RNA messengers for IL-6. Neutralizing antibodies to IL-6 did not inhibit their proliferation, and recombinant IL-6 did not stimulate it. Taken together, these data show that IL-6 is not the autocrine growth factor of these human myeloma cell lines. A high production of IL-6 was found in the bone marrows of patients with fulminating MM, compared with patients with inactive or slightly active MM, or to healthy donors. This IL-6 production was assigned to adherent cells of the bone-marrow environment but not to myeloma cells. A spontaneous proliferation of myeloma cells freshly isolated from patients was observed in short-term cultures. Recombinant IL-6 was able to amplify it two- to threefold. The spontaneous proliferation of the myeloma cells was inhibited by anti-IL-6 antibodies and reinduced by recombinant IL-6. After 2 to 3 weeks of culture, the myeloma-cell proliferation progressively declined and no IL-6-dependent myeloma cell lines could be obtained despite repeated additions of fresh IL-6 and costimulation with other cytokines such as tumor necrosis factor (TNF)beta, or IL-1 beta. These data demonstrated a paracrine but not autocrine regulation of the growth and differentiation of myeloma cells by IL-6.
منابع مشابه
Interleukin-6-dependent gene expression profiles in multiple myeloma INA-6 cells reveal a Bcl-2 family-independent survival pathway closely associated with Stat3 activation.
Interleukin 6 (IL-6) is a growth and survival factor for multiple myeloma cells. As we report here, the IL-6-dependent human myeloma cell line INA-6 responds with a remarkably rapid and complete apoptosis to cytokine withdrawal. Among the antiapoptotic members of the B-cell lymphoma-2 (Bcl-2) family of apoptosis regulators, only myeloid cell factor-1 (Mcl-1) was slightly induced by IL-6. Overex...
متن کاملInhibition of myeloma cell growth by dexamethasone and all-trans retinoic acid: synergy through modulation of interleukin-6 autocrine loop at multiple sites.
Interleukin-6 (IL-6)/IL-6 receptor (IL-6R) plays a major role in autocrine/paracrine growth regulation of myeloma cells. We investigated the effect of dexamethasone and all-trans retinoic acid, previously shown to modulate IL-6/IL-6R, on the in vitro growth of a human myeloma cell line, OPM-2. Both agents inhibited the clonogenic growth and 3H-thymidine incorporation in a concentration-dependen...
متن کاملCharacterization of an interleukin-6-mediated autocrine growth loop in the human multiple myeloma cell line, U266.
It has been reported recently that freshly isolated human myeloma cell cultures proliferate in response to added interleukin-6 (IL-6). Endogenous levels of IL-6 found in the same cultures suggested that an autocrine growth loop may contribute to cell growth. However, the lack of homogenous cell populations in primary myeloma cultures has made it difficult to distinguish between paracrine and au...
متن کاملDelineation of the roles of paracrine and autocrine interleukin-6 (IL-6) in myeloma cell lines in survival versus cell cycle. A possible model for the cooperation of myeloma cell growth factors.
Primary myeloma cells rapidly apoptose as soon as they are removed from their bone-marrow environment. A likely explanation is that the tumor environment produces survival factors that may counteract a spontaneous activation of pro-apoptotic program. Additional factors may trigger cell cycling in surviving myeloma cells. Interleukin-6 (IL-6) is a well recognized myeloma cell growth factor produ...
متن کاملEffect of glucocorticoids on the biologic activities of myeloma cells: inhibition of interleukin-1 beta osteoclast activating factor-induced bone resorption.
Regulatory effects of glucocorticoids (dexamethasone) on myeloma cells as well as bone resorption in multiple myeloma were investigated. Glucocorticoids significantly inhibited proliferation of myeloma cells, and decreased the messenger RNA (mRNA) expressions of interleukin-6 (IL-6) and secretory type immunoglobulin G (IgG). The inhibitory effects of glucocorticoids on myeloma cell proliferatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 73 2 شماره
صفحات -
تاریخ انتشار 1989